Use of methanotrophic microcosms, tag sequencing and thermodynamic metabolic models to examine structure-function relationships

Joseph Vallino, Nuria Fernández González and Julie Huber

> Marine Biological Laboratory Woods Hole, MA USA

> > ASLO Salt Lake City, Feb 2012

Objective: Predictive Understanding of Biogeochemistry

Biogeochemistry: Which M.M. get built?

Organisms Define Biogeochem.

- Different communities results in different biogeochemistry.
- Need to know who's there and their growth characteristics.
- Each ecosystem is a case study.
- Generalization very difficult.

Thermodynamics Driven

- Energy, nutrients and physical conditions define biogeochemistry.
- Species interchangeable, only function matters.
- Ecosystems operate at or towards an extremum.
- Generalization possible.

Use *Maximum Entropy Production Theory* as the basis for predicting microbial biogeochemistry

- Complex systems will organize to utilize (dissipate) all available free energy.
- See Paltridge (1975) (Experimental), Dewar (2003, 2005) (Theory)
- "This represents a paradigm shift from 'we eat food' to 'food has produced us to eat it'" (Lineweaver and Egan, 2008)

MEP Modeling: Methanotrophic Sys.

Distributed Metabolic Network (Only "Extracellular" Metabolites Needed)

See: Vallino (2010) *Phil. Trans. R. Soc. B* Vallino (2011) *Earth Syst. Dynam.* Entropy Production, $\dot{\sigma}$:

$$\dot{\sigma} = \frac{1}{T} \sum_{i} r_i \Delta_r G_{r_i}$$

Construct Optimal Control Problem:

maximize ở ਙ_i

But $\dot{\sigma}$ can be maximized either:

- Instantaneously
- Over time interval

Abiotic system maximize instantaneous Entropy Production (Steepest Descent)

> Living systems use information stored in the metagenome to maximize EP over time

CO₂ + 2H₂O

 $CH_{4} + 2O_{2}$

NSF ATB Project: Microbial Microcosms to Test MEP conjectures

Experiment 1: Integration of Entropy Production over time. Examine Community Adaptation to Cyclic Energy Inputs.

Two 18 L chemostats with continuous CH₄+O₂ input

MC 2

MC 3

Two 18 L chemostats with periodic CH₄+O₂ / O₂ input (20 day period)

MC 4

Media: mineral salts, with HNO₃ limiting (50 μ M) Dilution rate: 0.1 d⁻¹

(slide not presented at ASLO 2012)

Example of MEP model output

Reaction Efficiencies, ε_i :

State Variables:

Biological Structures, \mathfrak{S}_i :

Experimental Gas and pH Data

MC 2 and MC 3 Controls MC 1 and MC 4 Cycled

Real time data posted at: http://ecosystems.mbl.edu/MEP

Nutrients

454 V6+V4 Tag Analyses to date

10k-18k tag reads per sample, ~300k total for 22 samples

Biodiversity

MC 1 Day 62

OTU Community Changes

MC 1 (CH₄ Cycled)

Methanotroph OTU Time Series

Other OTU's

(slide *not* presented at ASLO 2012)

Local Similarity Analysis (LSA): MC 1

(Ruan et al. 2006; Xia et al. 2011) Only included OTU's ≥ 1% of population

(slide not presented at ASLO 2012)

Methanotroph Network

Summary

- Microcosms maintain high diversity even after several years.
- Diversity between microcosms is very similar, but changes significantly over time.
- Ecosystem function (methane oxidation) is stable, while community is dynamic.
- Cross feeding is important ($CH_4 \rightarrow CH_3OH \rightarrow CO_2$).
- Some members of rare biosphere become dominate.
- Microcosms develop dynamic spatial heterogeneity, which likely facilitates maintenance of diversity.
- We still need much more functional information for OTU's
- Have not seen significant adaptation to energy cycling yet.

Acknowledgements

Collaborators/RAs:

Undergraduate Students:

Hilary Smith Amy Snyder Alice Carter George Allen Joe Hakam

Funding

- NSF ATB (0928742)
- NSF LTER (0423565)
- NSF Eng (0756562)
- NSF OCE (0852263)

National Science Foundation