Bacteria-Phytoplankton Competition

Overview:

- Bacterial immobilization or remineralization of N.
- Competition between bacteria and phytoplankton for DIN.
- Experimentally examine how dissolved organic carbon (DOC) affects the competition between bacteria and phytoplankton for limiting nutrients.
- Demonstrate use of microcosms to study microbial dynamics.
- Analysis of time-series and predator-prey dynamics.

Microbial Loop

The microbial loop is a conceptualization by which DOM can be routed into the classic food chain via bacteria and their grazers.

Primary flow of C and N into aquatic food webs

Depending on the C:N composition of DOM, bacteria and phytoplankton can be in competition for DIN (and P).

Organisms with the higher surface area to volume will win.

Carbon and Nitrogen Balances

Bacteria

- ⇒ Consume DOM
- ⇒ Use DON over DIN
- ⇒ Either excrete of consume DIN
- Effect of C:N ratio of DOM on DIN uptake or excretion

- r_{U} : Rate of DOC uptake (µmol C l⁻¹ d⁻¹)
- r_E : Rate of DIN excretion (µmol N I⁻¹ d⁻¹)
- ρ_B : C:N Ratio of bacteria (atomic)
- $\rho_{\text{D}}:~\text{C:N}$ Ratio of DOM (atomic)

Bacterial N requirement:
$$\epsilon r_{U} \frac{1}{\rho_{B}}$$
 N associated with DOM uptake: $r_{U} \frac{1}{\rho_{D}}$
Rate of DIN excretion: $r_{E} = r_{U} \left(\frac{1}{\rho_{D}} - \frac{\epsilon}{\rho_{B}} \right)$

Phytoplankton-Bacteria Competition

- Consider aggregated conceptualization of lower trophic levels.
- If the C:N ratio of DOM is high, then bacteria will utilize DIN.
- Bacteria should out compete phytoplankton for DIN. Why?
- Dynamics of food web should be dependent on DOM composition

• Paradox: why do phytoplankton excrete DOM?

Value of Time Series Data

• In order to understand ecosystem function, causal relationships need to be determined between organisms and nutrients.

- "Snap shots" can not provide this information. Systems must be followed over time.
- Basic understanding obtained from observations can be used to build models.
- New time series data can be used to test models.

Example: Mesocosm Experiment

• Additions:

- NO $_3$ (5 $\mu\text{M}),$ PO $_4$ (0.5 $\mu\text{M}),$ Si (7 $\mu\text{M})$
- Leaf litter leachate (300 μM DOC)
- Samples Taken:
 - NO₃, NH₄, PO₄, Si, O₂ DIC
 - PAR
 - POC, PON, DOC, DON
 - Chl a
 - PP (¹⁴C and O₂ incubations)
 - Bacterial No. and productivity
 - Phyto- and zooplankton counts
 - DI¹³C, DO¹³C, DO¹⁵N
 - Size fractionated $\delta^{13}\text{C}$ and $\delta^{15}\text{N}$

- Treatments:
 - Control: Bag A
 - Organic Matter: Bag B
 - Daily Nutrients: Bag C
 - DOM + Nutrients: Bag D

Mesocosm Food Web Model

- Aggregated, coupled C and N model
- Emphasis on OM processing
- Holling type II and III growth kinetics

- State Eqns: 10
 - Auto. C, N
 - Osomo. C, N
 - Hetero. C, N
 - Detritus C
 - Detritus N
 - DIN N
 - DOM-L C
 - DOM-L N
 - DOM-R C
 - DOM-R N
- Parameters
 - 29 Kinetic
 - 10 Initial cond.

Nutrients + Organic Matter (Bag D)

Experimental Setup

- Collect Woods Hole seawater into two 20 I carboys
- Prepare two treatments:

	Treatment A	Treatment B
Glucose	0 μΜ	75 μM (450 μM C)
NO_3^-	36 μM	36 μM
SiO ₃	52 μM	52 μM
PO ₄	2.3 μM	2.3 μM

- Measure the following constituents over the 7-day incubation
 - DOC
 - NO₃-
 - NH₄⁺
 - PO₄³⁻
 - Chlorophyll a (by fluorescence and extraction)
 - Bacteria abundances (DAPI)
 - Nanoflagellates and Ciliates (protists)
 - Phosphatase
 - Bacterial productivity

What will happen in Treatment A versus Treatment B? Work clean, as sea water is readily contaminated by hands, etc.

Measurement Assignments

Bacteria:	Bri
Nanoflagellates	Sunniva
DOC:	Alex
Chl a (Method 1):	Sydney
Chl a (Method 2):	Lily
Nitrate:	Nora
Ammonium	Gwyneth
Phosphate:	Nick
Phosphatase:	Ella & Alice
Bacterial Productivity:	Anna & Leah