Bacterial Abundance

Objective

- Measure bacterial numbers and mass per unit volume.
- Note, we are not concerned with identification here.

Why do we want to know abundance?

- Allows determination of biomass pool size.
- Provides crude estimate of element fluxes.
- Helps to characterize dynamics of ecosystem.

Challenges with natural samples

- Low concentrations

Methods

- Dry and weigh (not with natural samples).
- Plate (or viable) count (Today).
- Direct count. (Thursday).

Why do we want to measure bacterial concentration?

Estimate bacterial pool size

- Ocean: $\quad 10^{9}$ cells l^{-1}

Atm: 850 Pg

Oceans
Organic: 700 Pg Inorganic: $38,000 \mathrm{Pg}$

Crude estimate of element fluxes (x : bacterial biomass)

- Growth rate: $\quad G=\mu x ; \quad \mu$: specific growth rate Uptake rate: $\quad U=\mu x / \varepsilon$; ε : growth efficiency Typical: $\quad \mu=1 \mathrm{~d}^{-1} ; \varepsilon=0.2$

Ecosystem dynamics

Time

How is bacterial concentration measured?

Laboratory cultures

- Measure optical density and cell dry weight

Problems

- High cell densities required.
- Must be only cells (i.e., no debris or detritus)
- High predator abundance would also skew results.
\Rightarrow Technique does not work in the field!

Dilution Plates

- Grow single cells on Petri plate until colonies are visible, then count colonies.
- Must use serial dilution so that colonies are in countable range.
-This method has a major problem. What is it?

Direct Counts

- Use microscope to directly count bacteria.

Problem: Bacteria in natural environments are very small and difficult to see and distinguish from detritus using standard light microscopy.

Dilution Plates

Statistically relevant colony density: 30-300
Technique largely used for isolation or water testing, such as coliform test.

Dilution Plate Calculations

N : Number of colonies on plate
V_{S} : Volume pipetted onto Petri plate.
D: Dilution factor for test tube plated out.
ρ : Concentration of cells in original sample (cells ml ${ }^{-1}$)

$$
\rho=\frac{N}{V_{S}} \frac{1}{D}
$$

Example:

N: 33
V_{S} : $100 \mu \mathrm{l}$

$$
\rho=\frac{33}{0.1} \frac{1}{10^{-4}}=3.3 \times 10^{6} \mathrm{cells} \mathrm{ml}^{-1}
$$

D: $\quad 10^{-4}$

Fecal Coliform Counts

The abundance of fecal coliform bacteria are used as an indicator of fecal contamination of both drinking water and recreational water (i.e., swimming, shellfishing).

Fecal coliform bacteria inhabit the intestinal tracks of animals. While the indicator bacteria are typically not pathogens, they indicate that the water has become contaminated with fecal material, either by human or other animals.

Although it would be better to assay for pathogens directly (such as hepatitis), it is still too difficult to culture these organism quickly and reliably (or at all).

Basic method:

- Aseptically collect and filter water onto sterile filter.
- Place filter on sterile pad that contains medium for the culturing of fecal coliform bacteria (contains eosin-methylene blue dye)
- Incubate filter at $40^{\circ} \mathrm{C}$ (or higher)
- Count colonies to determine colonies/ 100 ml water

EPA requirements (cfu/100ml):

- Drinking water:

None

- Shell fishing: ≤ 14
- Swimming ≤ 200

Some Drinking Water Pathogens

Viruses:

- Hepatitis
- Enterovirus
- Noroviruses

Bacteria:

- Cholera (Vibrio cholera)
- typhoid fever (Salmonella typhi)
- Fecal bacteria (often Escherichia coli)
- Campylobacter

Protists:

- Cryptosporidia
- Giardia

Woodneck Creek Closed, Reopened Due To High Bacteria Counts
By MARTHA V. SCANLON After closing last Wednesday due to high bacteria count, the creek at Woodneck Beach reopened Thursday for swimming.
Water samples from town beaches are tested by the Barnstable County Department of Health evry week during the summer for acteria levels. If a beach has a or swimming, then retested daily ntil it passes. Ang after the beach closing was posted for high bacteria counts, many people were still lying on he beach and some were wading de of Woodneck Beach remained pen.
The closing was posted on a
he closing was posted on a eek beach. bea.
Jessica A. Poppe of Green Pond oad, East Falmouth, a parking e saw many peodneck, said that he beach parking lot, but leave ce they read the sign.
It's definitely not as busy as
usual, especially considering it After it she said earby roads into the water houses can was ria count to be high. Bacteria usually flushed away during the day by the tide.
There have been two other brie According to the Barnstable County beach water quality re port, Old Silver Beach failed on
June 20 and was reopened the June 20 and was reopened the
next day and Woodneck Beach failed on June 13 and was also reopened the next day. Test results for Falmout

Beaches are available blecountyhealth.org/bsfalmouth | $\begin{array}{l}\text { blecou } \\ \mathrm{htm} .\end{array}$ |
| :--- |

Direct Bacterial Counts

Challenges with Direct Count Method

- Natural samples contain low concentrations of bacteria (10^{6} cells ml^{-1})
\Rightarrow Must concentrate bacteria
- Bacteria are small (0.2-1 $\mu \mathrm{m}$) so difficult to see and differentiate from detritus using microscope with normal or phase contrast lighting techniques.
\Rightarrow Must stain with fluorescent dye and use epifluorescence microscopy.

Procedure outline

- Incubate water sample with fluorescent dye.
- Concentrate sample onto Black $0.2 \mu \mathrm{~m}$ filter.
- Place filter on slide, and count bacteria in grid
- Calculate bacterial numbers.

Epifluorescence Microscopy

Fluorescence

- Compound is "excited" at a particular wavelength of light (usually in the UV)
- Compound then emits light at a different, lower, wavelength.

- Advantage: contrast is extremely high, which allows detection of weak light.

Dyes used

- Acridine orange (AO)
- DAPI (4'6-diamidino-2-phenylindole)

Mechanisms

- AO fluoresces when bound to DNA or RNA. Cells appear orange.
- DAPI fluoresces when bound to DNA and is more specific. Cells appear blue.

Epifluorescence Details

Objective \& Eyepiece Descriptors

Slide Preparation for DAPI

Notes:

- Place filter so that bacteria are facing up.
- Use small drops of immersion oil.
- Cover slips stick together. If you have more than one, you will not be able to focus well.
- Label slide.

Cell Density Calculations

Known or measured

- Volume of sample filtered: V_{S}
- Dilution Factor (from adding preservative): D
- Area of filter occupied by sample: A_{F}
- Area of grid in field of view: A_{G}
- Average number of cells grid-1 ${ }^{-1} \mathrm{~N}$

Cell Concentration

- Cell Conc: ρ

$$
\rho=\frac{\frac{A_{F}}{A_{G}} N}{V_{S} D}
$$

