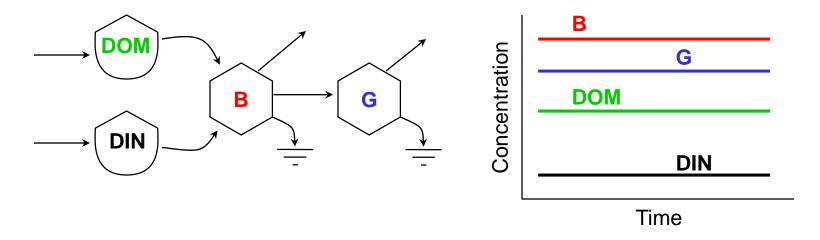
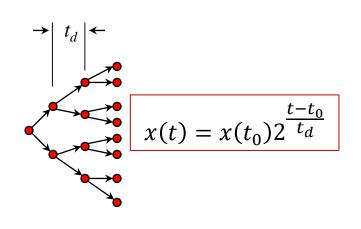

Bacterial Production Lab


Additional reading: Simon and Azam (1989)

State variables and processes



Objective: Measure bacterial growth rate (also called bacteria production)

Why do we want to measure processes? Turnover: [B]/rB

Growth Equation

Where:

Doubling time of population.

x(t) Number or mass of cells per unit volume at time t.

Time at start (usually set to 0).

Note, cell mass or numbers are easily converted if we assume cells are all the same size: $x(t) = \varphi n(t)$, where φ is the mass per cell and n is the number of cells per unit volume and x(t) is the mass of cells per unit volume.

Specific growth rate, µ

Take derivative of above equation with respect to time.

$$r_B = \frac{dx(t)}{dt} = \mu x(t) \qquad \mu = \frac{\ln(2)}{t_d};$$

$$\mu = \frac{\ln(2)}{t_d};$$

$$\int \frac{dx}{x} = \int \mu \, dt \quad \Rightarrow \quad x(t) = x(0)e^{\mu t}$$

Recall:
$$\frac{da^{f(t)}}{dt} = a^{f(t)} \ln(a) \frac{df(t)}{dt}$$

Specific growth rate

$$\mu = \frac{1}{x(t)} \frac{dx(t)}{dt} = \frac{1}{x(t)} r_B$$

Doubling rate

$$\mu_2 = \frac{1}{t_d}; \quad \mu_2 \neq \mu$$

Size and Growth Rate

Plankton: Net movement dependent on flow field. **Phyto**: Autotrophic

Nekton: Move independent of flow field. **Zoo**: Heterotrophic

Femtoplankton: $0.02 - 0.2 \mu m$

Mostly viruses

Picoplankton: $0.2 - 2 \mu m$

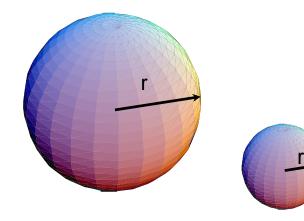
• Bacteria, cyanobacteria

Nanoplankton: $2 - 20 \mu m$

• Flagellates, dinoflagellates

Microplankton 20 - 200 μm

· Diatoms, ciliates.


Mesoplankton $> 200 \mu m$

Zooplankton (copepods)

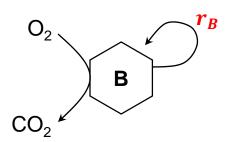
Bacteria: 0.2 μm - 1000 μm (1 mm)

 Typically 1 - 2 μm culture, or < 1 μm natural environments.

Surface area to volume

Surface area: $4 \pi r^2$

Volume: $4/3 \pi r^3$

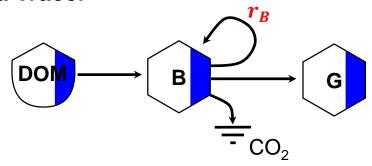

SA/V = 3/r

 $\mu \propto SA/V$

Consequently, smaller cells will have a higher specific growth rate

How are growth rates measured?

Accumulation or Loss Rates



Isolate bacteria (How?), then measure:

$$r_B = \frac{dx(t)}{dt} \propto \frac{dCO_2}{dt} \propto -\frac{dO_2}{dt}$$

What is main problem with this technique?

Use a Tracer

$$r_{Blue} = \frac{[Blue(t)] - [Blue(0)]}{\Delta t}; \quad r_{B} = \frac{r_{Blue}}{f}$$

where r_{Blue} is the rate of "blue" accumulation and f is the fraction of dissolved organic matter (DOM) that is labeled "blue".

Tracer Requirements

- Should not change environment
- Not preferentially consumed.
- Bacteria must utilize for growth
- Must be able to measure at low concentrations. Low detection limits reduce incubation times.
- Need some measure of f

Radio-isotope Tracers

Radionuclides typically used in biology:

	Half Life	<u>Type</u>
Tritium (³ H)	12.26 y	β
Carbon-14 (14C)	5730 y	β
Sulfur-35 (³⁵ S)	87.2 d	β
Chlorine-36 (³⁶ Cl)	300,000 y	β
Phosphorus-32 (³² P)	14.3 d	β
lodine-131 (¹³¹ I)	8.06 d	β, γ
lodine-125 (125I)	60 d	γ

d x-ray)

Source of He

For bacterial production, ³H and ¹⁴C used.

Note, 3 H and 14 C are weak $^{\beta}$ emitters, so shielding is not required.

Units: Curie, Ci: 2.2×10^{12} disintegrations per min (DPM)

(activity of 1 gram of radium-226)

SI Units: Becquerel, Bq: $1 DPS = 60 DPM = 2.7 \times 10^{-11} Ci$

Specific activity (SA): Ci mmol⁻¹
Concentration: Ci ml⁻¹

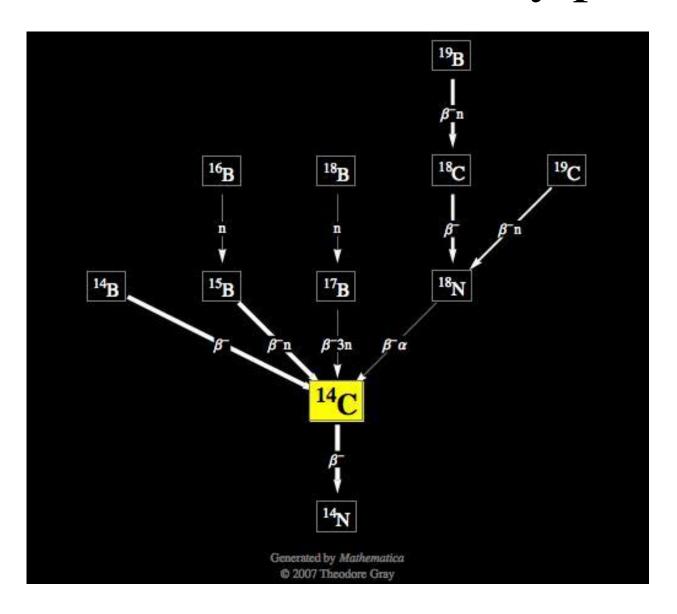
Radioactivity measurements:

- Geiger counter
- Scintillation counter (method we will use)

Levels of detection

SA: 371 mCi (mmol ¹⁴C)⁻¹

Measure: 10 CPM~10 DPM


Detect: 1×10^{-14} mol

10 fmol

Measurements are given in counts per min. (CPM) Due to some losses, CPM < DPM

Annual Limit on ¹⁴C Ingestion: 2 mCi

¹⁴C formation and decay path

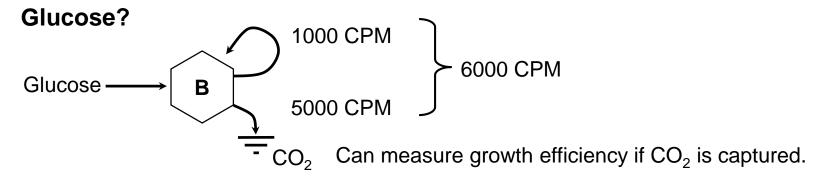
Radiation Exposure Limits and Comparisons (UC Davis)

rem: Roentgen equivalent man. Sievert (Sv) = 100 rem

Dose Equivalent Limits (Monitored Radiation Workers)

Targe Tissue	sue Regulatory Limit	
Whole Body	5000 mrem/year	2500 mrem/year
Extremities	50000 mrem/year	25000 mrem/year
Skin of the Whole body	50000 mrem/year	25000 mrem/year
Fetus	500 mrem/gestational period	50 mrem/month

Common Radiation Exposures (Natural Sources and Human Made)


One Coast to Coast Flight	3 mrem
Natural Background Radiation in the U.S.	150 - 300 mrem/year
Chest Radiograph, A/P view	15 - 25 mrem/view
Chest Radiograph, Lateral view	50 - 65 mrem/view
Screening Mammography (film/screen combination)	60 - 135 mrem/view
Computer Aided Tomography (CAT) scan of Body (20 slices)	3000 - 6000 mrem

Biologically Significant Radiation Exposures (Absorbed/Acute Exposure)

Risk of contracting cancer increased 0.09%	1000 mrem
Temporary blood count change	25000 mrem
Permanent sterilization in men	100000 mrem
Permanent sterilization in women	250000 mrem
Skin Erythema	300000 mrem
Cataract formation	600000 mrem

What Compounds to Label?

Can't ¹⁴C-label all DOM, so label only certain compounds

What fraction of the bacterial cell is produced from glucose?

Problem: it is difficult to know what fraction of bacterial synthesis comes from glucose.

Label macromolecules instead using appropriate monomer:

	<u>Monomer</u>	<u>% CDW</u>	
Protein	Amino Acids	55.0	
RNA	A, G, C, U	20.5 \rightarrow Cultured <i>E</i> .	coli
DNA	A, G, C, T	3.1	

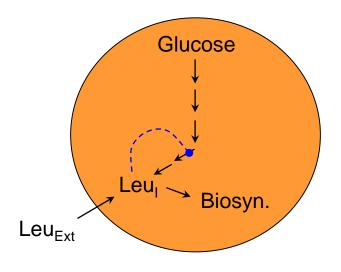
Bacterial Production from ¹⁴C-Leucine Uptake

Use ¹⁴C-leucine to measure the rate of bacterial protein synthesis. Calculate bacterial production rate using the following "pseudo constants":

Pseudo constants:

Leucine content in protein 7.3 mol %

Protein Ave MW 131.9

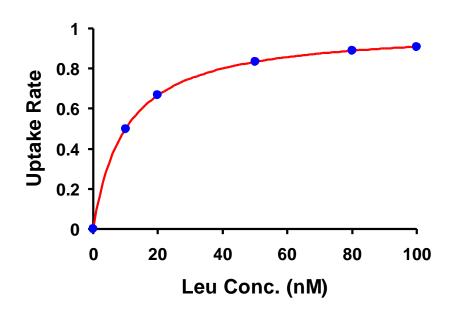

Protein 63 % CDW

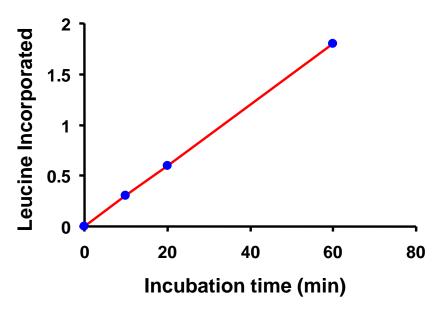
Cell dry weight (CDW) 54 % Carbon

Isotope Dilution Problem

Occurs when radioisotope is mixed with non-radioisotope.

- Extracellular
 - Caused by presence of Leu in solution.
 - Leu Concentration is small (< 1 nM), so add
 >10 nM Leu and ignore extracellular dilution.
- Intracellular
 - Caused by de novo Leu synthesis.
 - Assume negligible, or measure.


Assessing Isotope Dilution


Extracellular dilution and Incubation Time:

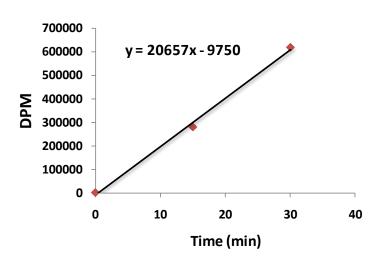
- Measure background leucine concentration.
- Construct kinetic curve (top right fig).
- Construct time course curve (bottom left fig).

Intracellular dilution:

- Measure Sp. activity of Leu in protein.
- Measure actual protein synthesis rate and compare isotope-measured value.
- Often, intracellular dilution is assumed not to be significant.

Example Calculations

Experimental Setup


SA Leu: 100 Ci mmol⁻¹

Incubations: 15 and 30 min Volume 1.5 ml

Measure activity after incubation

20,657 DPM min⁻¹ (from slope)

Note, CPM ≠ DPM

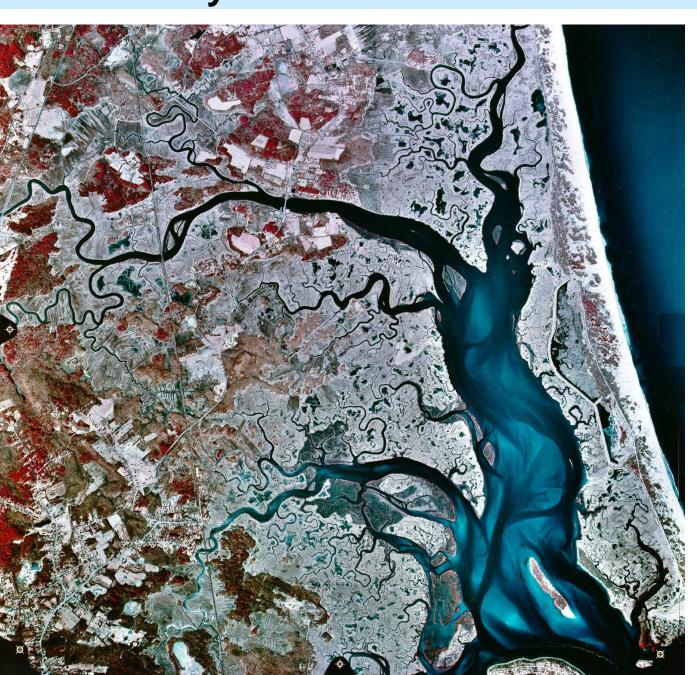
$$Leu = 20657 \frac{DPM}{min} \times \frac{1}{2.2 \times 10^{12}} \frac{Ci}{DPM} \times \frac{1}{100} \frac{mmol\ Leu}{Ci} \times \frac{1}{1000} \frac{mol\ Leu}{mmol\ Leu}$$

$$=9.39\times10^{-14}\frac{mol\ Leu}{min}$$

$$Cells = 9.39 \times 10^{-14} \frac{mol\ Leu}{min} \times \frac{1}{0.073} \frac{mol\ Protein}{mol\ Leu} \times 132 \frac{g\ Protein}{mol\ Protein} \times \frac{1}{0.63} \frac{g\ DCW}{g\ Protein} \times 0.54 \frac{g\ C}{g\ DCW}$$
$$= 1.46 \times 10^{-10} \frac{g\ C}{min}$$

$$BP = 1.46 \times 10^{-10} \frac{g C}{min} \times 1440 \frac{min}{d} \times \frac{1}{1.5 \ mL} \times 1000 \frac{mL}{L} = 1.40 \times 10^{-4} \frac{g C}{L \ d}$$

$$= 1.40 \times 10^{-4} \frac{g \ C}{L \ d} \times 10^{6} \frac{\mu g \ C}{g \ C} \times \frac{1}{12} \frac{\mu mol \ C}{\mu g \ C} = 11.7 \frac{\mu mol \ C}{L \ d}$$

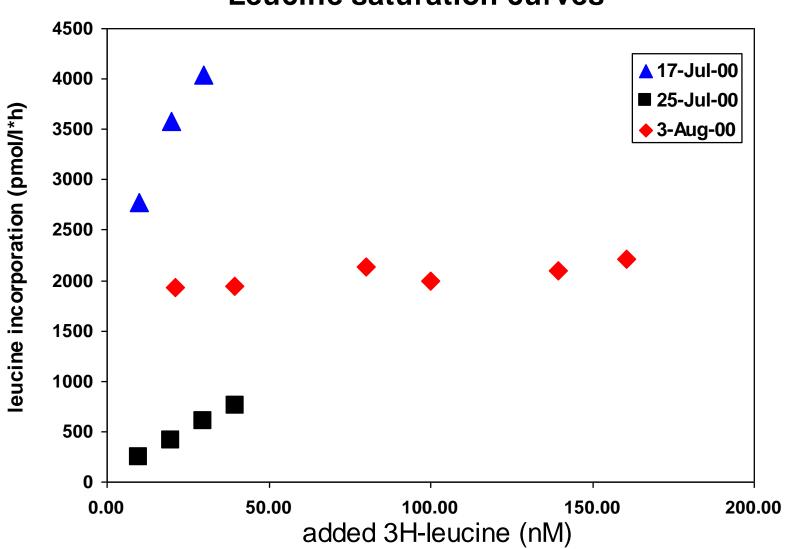

Notes

- Similar procedure can be done using thymidine incorporation into DNA.
- Centrifugation plus rinsing (or filtration plus washing) is used to separate added Leu from bacterial incorporated Leu.
- A killed control is run under identical conditions to account for abiotic adsorption of Leu onto particulate matter.
- Isotope dilution due to extracellular matrix may not be insignificant in eutrophic environments.
- Conversion factors are dependent on cellular conditions, and values reported are controversial. Often, only Leu incorporation is reported (i.e., not converted into cell biomass).

Safety Notes

- Wear gloves had lab coats at all times
- No open-top shoes
- Wear safety glasses (TCA is an acid)
- Keep all radioactive materials on your trays and conduct lab work on trays
- Eject pipette tips onto kimwipes on your tray
- All liquid waste must be pored into jugs labels for ¹⁴C waste
- All solids that come into contact with ¹⁴C must be disposed of in ¹⁴C solid waste bins
- If you spill a sample containing ¹⁴C, lets us know so it can be properly cleaned.

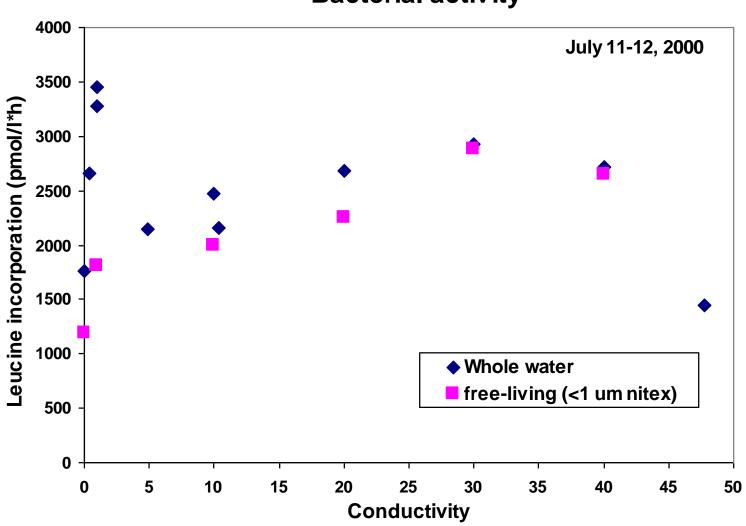
Plum Island Estuary



Sea Level Rise

Example: Isotope Dilution

Byron Crump


Leucine saturation curves

Example: Plum Island Estuary Survey

(Byron Crump)

Bacterial activity

