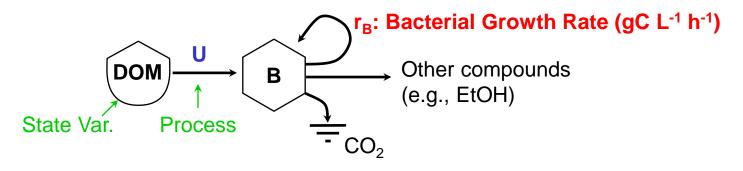
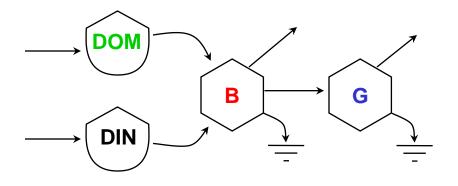
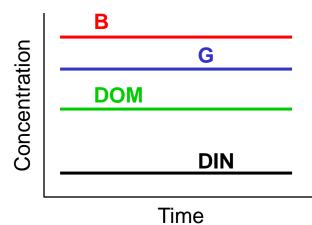

Bacterial Production Module

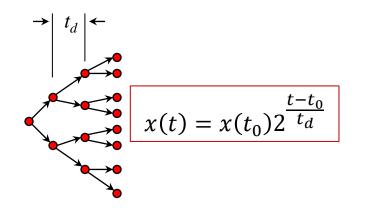

https://www.nature.com/articles/nrmicro3326

Nature Reviews | Microbiology

Bacterial Production Lab


Additional reading: Simon and Azam (1989)


State variables and processes


Objective: Measure bacterial growth rate (also called bacteria production)

Why do we want to measure processes? Turnover: [B]/r_B

Growth Equation

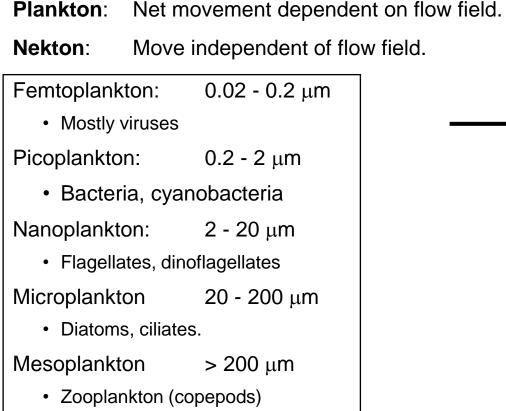
Where:

- t_d Doubling time of population.
- x(t) Number or mass of cells per unit volume at time t.
- t_0 Time at start (usually set to 0).

Note, cell mass or numbers are easily converted if we assume cells are all the same size: $x(t) = \varphi n(t)$, where φ is the mass per cell and *n* is the number of cells per unit volume and x(t) is the mass of cells per unit volume.

Coopifie arouth rote

Specific growth rate, $\boldsymbol{\mu}$

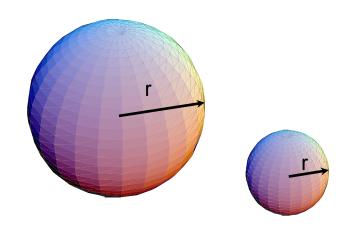

Take derivative of above equation with respect to time.

$$r_{B} = \frac{dx(t)}{dt} = \mu x(t) \qquad \mu = \frac{\ln(2)}{t_{d}}; \qquad \mu = \frac{1}{x(t)} \frac{dx(t)}{dt} = \frac{1}{x(t)} r_{B}$$

$$\int \frac{dx}{x} = \int \mu \, dt \quad \Rightarrow \quad x(t) = x(0)e^{\mu t} \qquad \text{Doubling rate}$$

$$\mu_{2} = \frac{1}{t_{d}}; \quad \mu_{2} \neq \mu$$
Recall:
$$\frac{da^{f(t)}}{dt} = a^{f(t)} \ln(a) \frac{df(t)}{dt}$$

Size and Growth Rate

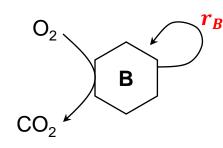


Bacteria: 0.2 μm - 1000 μm (1 mm)

 Typically 1 - 2 μm culture, or < 1 μm natural environments. **Phyto**: Autotrophic

Zoo: Heterotrophic

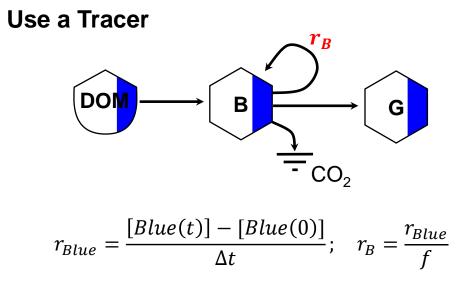
Surface area to volume


Surface area:	$4 \pi r^2$
Volume:	$4/3 \pi r^3$
SA/V =	3/r

$\mu \propto SA/V$

Consequently, smaller cells will have a higher specific growth rate

How are growth rates measured?


Accumulation or Loss Rates

Isolate bacteria (How?), then measure:

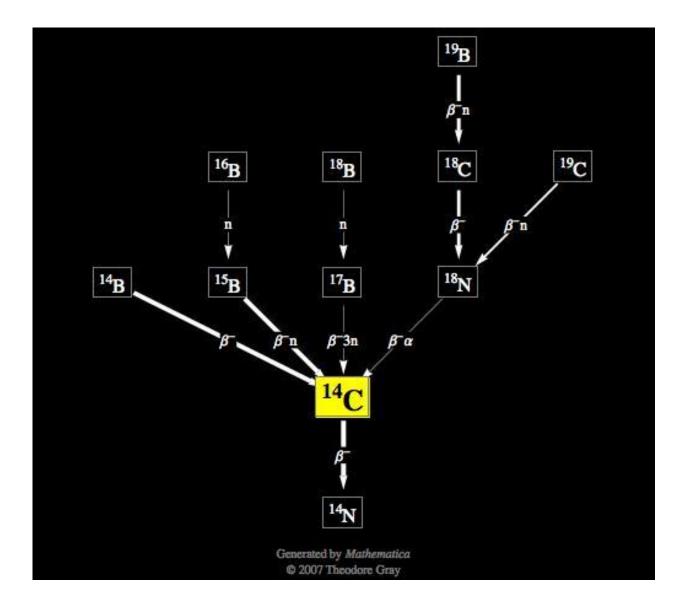
$$r_B = \frac{dx(t)}{dt} \propto \frac{dCO_2}{dt} \propto -\frac{dO_2}{dt}$$

What is main problem with this technique?

where r_{Blue} is the rate of "blue" accumulation and *f* is the fraction of dissolved organic matter (DOM) that is labeled "blue".

Tracer Requirements

- Should not change environment
- Not preferentially consumed.
- Bacteria must utilize for growth
- Must be able to measure at low concentrations. Low detection limits reduce incubation times.
- \bullet Need some measure of f


Radio-isotope Tracers

Radionuclides typically Tritium (³ H) Carbon-14 (¹⁴ C) Sulfur-35 (³⁵ S) Chlorine-36 (³⁶ Cl) 3 Phosphorus-32 (³² P) Iodine-131 (¹³¹ I) Iodine-125 (¹²⁵ I)	Half Life Type 12.26 y β 5730 y β 87.2 d β	Source of HeTypesαHelium nucleiβElectronγGamma ray (and x-ray)nNeutronFor bacterial production, ³ H and ¹⁴ C used.Note, ³ H and ¹⁴ C are weak β emitters, so shielding is not required.
Units: Curie, Ci:	2.2×10^{12} disintegrations per min (DPM) (activity of 1 gram of radium-226)	
SI Units: Becquerel, Bq:	1 DPS = 60 DPM = 2.7 x	10 ⁻¹¹ Ci
Specific activity (SA):	Ci mmol ⁻¹	Levels of detection
Concentration:	Ci ml ⁻¹	SA: 371 mCi (mmol ¹⁴ C) ⁻¹
Radioactivity measurements:		Measure: 10 CPM~10 DPM
Geiger counterScintillation counter (m	ethod we will use)	Detect: 1×10^{-14} mol 10 fmol

Measurements are given in counts per min. (CPM) Due to some losses, CPM < DPM Annual Limit on ¹⁴C Ingestion: 2 mCi

Source of He

¹⁴C formation and decay path

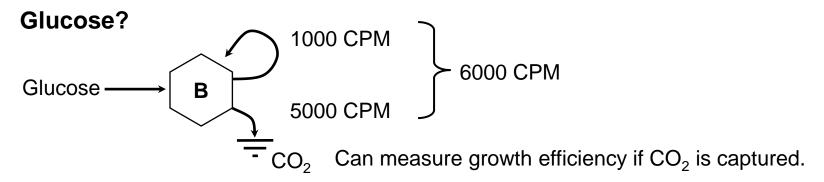
Radiation Exposure Limits and Comparisons (UC Davis)

rem: Roentgen equivalent man. Sievert (Sv) = 100 rem

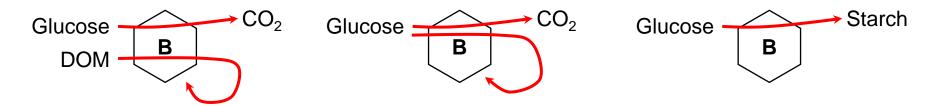
Dose Equivalent Limits (Monitored Radiation Workers)

Targe Tissue	Regulatory Limit	UC Davis Guideline
Whole Body	5000 mrem/year	2500 mrem/year
Extremities	50000 mrem/year	25000 mrem/year
Skin of the Whole body	50000 mrem/year	25000 mrem/year
Fetus	500 mrem/gestational period	50 mrem/month

Common Radiation Exposures (Natural Sources and Human Made)


One Coast to Coast Flight	3 mrem
Natural Background Radiation in the U.S.	150 - 300 mrem/year
Chest Radiograph, A/P view	15 - 25 mrem/view
Chest Radiograph, Lateral view	50 - 65 mrem/view
Screening Mammography (film/screen combination)	60 - 135 mrem/view
Computer Aided Tomography (CAT) scan of Body (20 slices)	3000 - 6000 mrem

Biologically Significant Radiation Exposures (Absorbed/Acute Exposure)


Risk of contracting cancer increased 0.09%	1000 mrem
Temporary blood count change	25000 mrem
Permanent sterilization in men	100000 mrem
Permanent sterilization in women	250000 mrem
Skin Erythema	300000 mrem
Cataract formation	600000 mrem

What Compounds to Label?

Can't ¹⁴C-label all DOM, so label only certain compounds

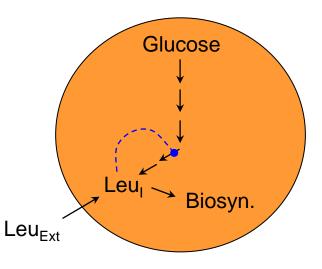
What fraction of the bacterial cell is produced from glucose?

Problem: it is difficult to know what fraction of bacterial synthesis comes from glucose.

Label macromolecules instead using appropriate monomer:

	<u>Monomer</u>	<u>% CDW</u>	
Protein	Amino Acids	55.0	
RNA	A, G, C, U	20.5 Cultured <i>E. co</i>	li
DNA	A, G, C, T	3.1	

Bacterial Production from ¹⁴C-Leucine Uptake

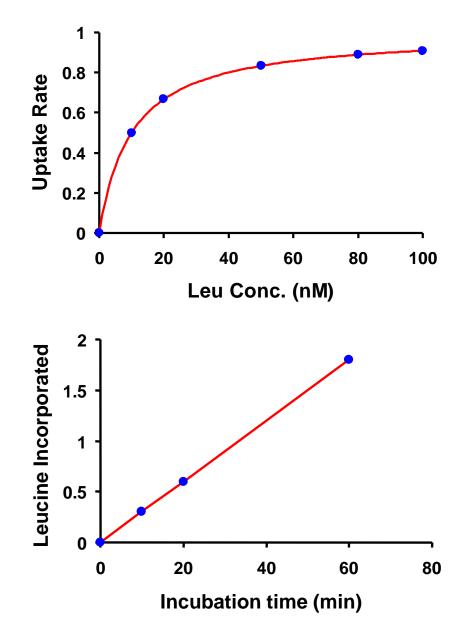

Use ¹⁴C-leucine to measure the rate of bacterial protein synthesis. Calculate bacterial production rate using the following "pseudo constants":

Leucine content in protein	7.3 mol %
Protein Ave MW	131.9
Protein	63 % CDW
Cell dry weight (CDW)	54 % Carbon

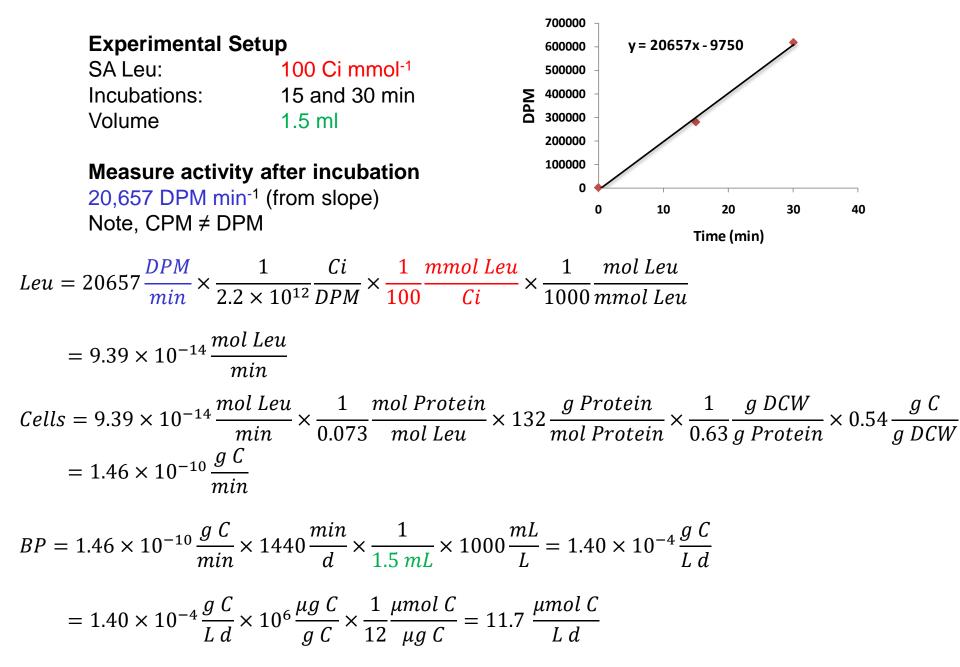
Isotope Dilution Problem

Occurs when radioisotope is mixed with non-radioisotope.

- Extracellular
 - Caused by presence of Leu in solution.
 - Leu Concentration is small (< 1 nM), so add >10 nM Leu and ignore extracellular dilution.
- Intracellular
 - Caused by de novo Leu synthesis.
 - Assume negligible, or measure.


Assessing Isotope Dilution

Extracellular dilution and Incubation Time:

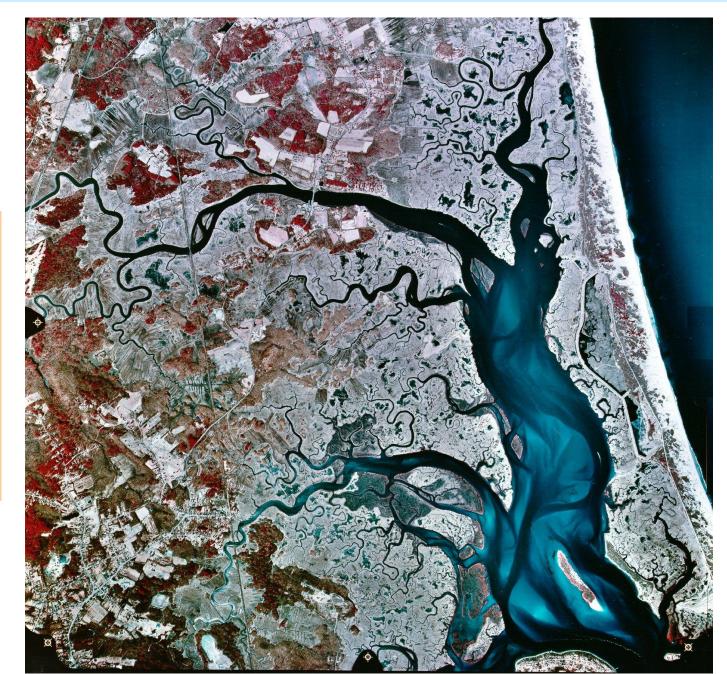

- Measure background leucine concentration.
- Construct kinetic curve (top right fig).
- Construct time course curve (bottom left fig).

Intracellular dilution:

- Measure Sp. activity of Leu in protein.
- Measure actual protein synthesis rate and compare isotope-measured value.
- Often, intracellular dilution is assumed not to be significant.

Example Calculations

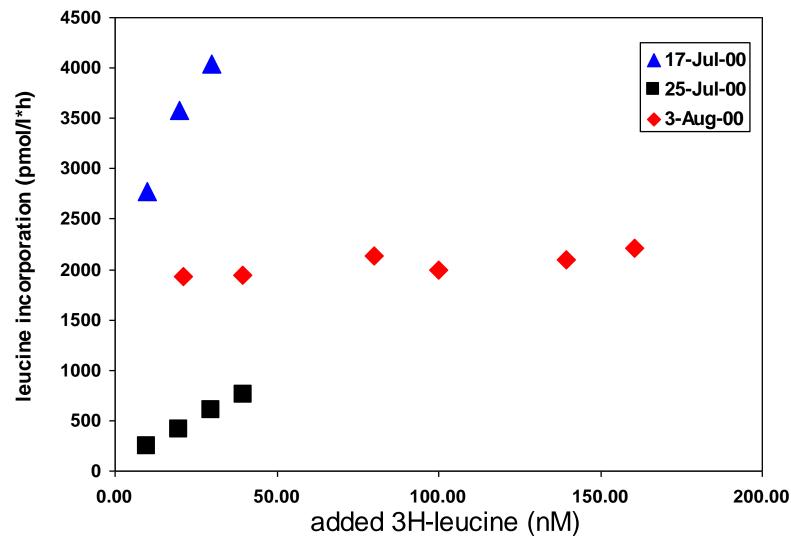
Notes


- Similar procedure can be done using thymidine incorporation into DNA.
- Centrifugation plus rinsing (or filtration plus washing) is used to separate added Leu from bacterial incorporated Leu.
- A killed control is run under identical conditions to account for abiotic adsorption of Leu onto particulate matter.
- Isotope dilution due to extracellular matrix may not be insignificant in eutrophic environments.
- Conversion factors are dependent on cellular conditions, and values reported are controversial. Often, only Leu incorporation is reported (i.e., not converted into cell biomass).

Safety Notes

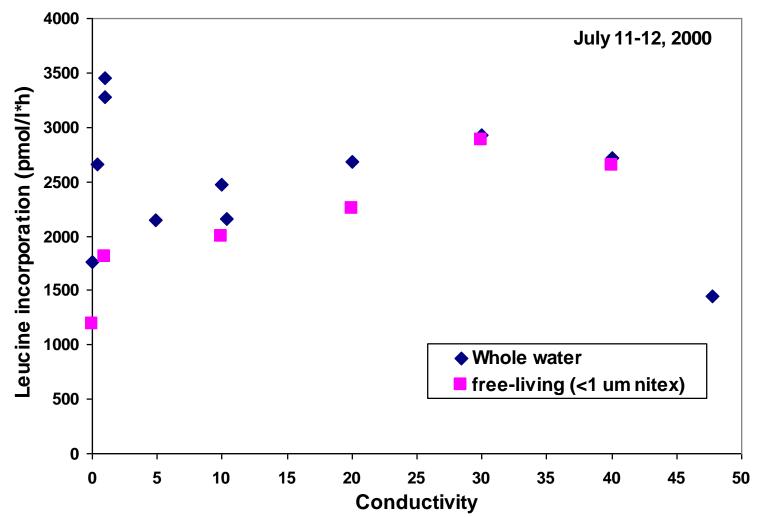
- Wear gloves had lab coats at all times
- No open-top shoes
- Wear safety glasses (TCA is an acid)
- Keep all radioactive materials on your trays and conduct lab work on trays
- Eject pipette tips onto kimwipes on your tray
- All liquid waste must be pored into jugs labels for ¹⁴C waste
- All solids that come into contact with ¹⁴C must be disposed of in ¹⁴C solid waste bins
- If you spill a sample containing ¹⁴C, lets us know so it can be properly cleaned.

Plum Island Estuary


Land Use Change

Sea Level Rise

Example: Isotope Dilution Byron Crump


Leucine saturation curves

Example: Plum Island Estuary Survey

(Byron Crump)

Bacterial activity

