Overview:

- Bacterial immobilization or remineralization of N.
- Competition between bacteria and phytoplankton for DIN.
- Experimentally examine how dissolved organic carbon (DOC) affects the competition between bacteria and phytoplankton for limiting nutrients.
- Demonstrate use of microcosms to study microbial dynamics.
- Analysis of time-series and predator-prey dynamics.
The microbial loop is a conceptualization by which DOM can be routed into the classic food chain via bacteria and their grazers.

- **DOM:** Dissolved organic matter
- **P:** Phytoplankton
- **Z:** Zooplankton
- **F:** Fish
- **B:** Bacteria
- **nF:** Nanoflagellates
- **C:** Ciliates
Primary flow of C and N into *aquatic* food webs

Energy and mass enter the base of the food web via phytoplankton or bacteria.

Depending on the C:N composition of DOM, bacteria and phytoplankton can be in competition for DIN (and P).

Organisms with the higher surface area to volume will win.
Carbon and Nitrogen Balances

- **Bacteria**
 - Consume DOM
 - Use DON over DIN
 - Either excrete or consume DIN

- **Effect of C:N ratio of DOM on DIN uptake or excretion**

 ![Diagram](image)

 - r_U: Rate of DOC uptake (μmol C l$^{-1}$ d$^{-1}$)
 - r_E: Rate of DIN excretion (μmol N l$^{-1}$ d$^{-1}$)
 - ρ_B: C:N Ratio of bacteria (atomic)
 - ρ_D: C:N Ratio of DOM (atomic)

 Bacterial N requirement: $\varepsilon_r u \frac{1}{\rho_B}$

 N associated with DOM uptake: $r_U \frac{1}{\rho_D}$

 Rate of DIN excretion: $r_E = r_U \left(\frac{1}{\rho_D} - \frac{\varepsilon}{\rho_B} \right)$
Phytoplankton-Bacteria Competition

- Consider aggregated conceptualization of lower trophic levels.
- If the C:N ratio of DOM is high, then bacteria will utilize DIN.
- Bacteria should out compete phytoplankton for DIN. Why?
- Dynamics of food web should be dependent on DOM composition

Paradox: why do phytoplankton excrete DOM?
Value of Time Series Data

• In order to understand ecosystem function, causal relationships need to be determined between organisms and nutrients.

• "Snap shots" can not provide this information. Systems must be followed over time.

• Basic understanding obtained from observations can be used to build models.

• New time series data can be used to test models.
Example: Mesocosm Experiment

- **Additions:**
 - NO$_3$ (5 μM), PO$_4$ (0.5 μM), Si (7 μM)
 - Leaf litter leachate (300 μM DOC)

- **Treatments:**
 - Control: Bag A
 - Organic Matter: Bag B
 - Daily Nutrients: Bag C
 - DOM + Nutrients: Bag D

- **Samples Taken:**
 - NO$_3$, NH$_4$, PO$_4$, Si, O$_2$ DIC
 - PAR
 - POC, PON, DOC, DON
 - Chl a
 - PP (14C and O$_2$ incubations)
 - Bacterial No. and productivity
 - Phyto- and zooplankton counts
 - DI13C, DO13C, DO15N
 - Size fractionated δ^{13}C and δ^{15}N
Mesocosm Food Web Model

- Aggregated, coupled C and N model
- Emphasis on OM processing
- Holling type II and III growth kinetics

- State Eqns: 10
 - Auto. C, N
 - Osomo. C, N
 - Hetero. C, N
 - Detritus C
 - Detritus N
 - DIN N
 - DOM-L C
 - DOM-L N
 - DOM-R C
 - DOM-R N

- Parameters
 - 29 Kinetic
 - 10 Initial cond.
Experimental Setup

• Collect Woods Hole seawater into two 20 l carboys
• Prepare two treatments:

<table>
<thead>
<tr>
<th></th>
<th>Treatment A</th>
<th>Treatment B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>0 µM</td>
<td>75 µM (450 µM C)</td>
</tr>
<tr>
<td>NO$_3^-$</td>
<td>36 µM</td>
<td>36 µM</td>
</tr>
<tr>
<td>SiO$_3$</td>
<td>52 µM</td>
<td>52 µM</td>
</tr>
<tr>
<td>PO$_4$</td>
<td>2.3 µM</td>
<td>2.3 µM</td>
</tr>
</tbody>
</table>

• Measure the following constituents over the 7 day incubation
 • DOC (1 person)
 • NO$_3^-$ (1)
 • NH$_4^+$ (1)
 • PO$_4^{3-}$ (1)
 • Chlorophyll a (by fluorescence and extraction) (1)
 • Bacteria abundances (DAPI) (1)
 • Phosphatase (2)
 • Bacterial production (2)

What will happen in Treatment A versus Treatment B?
Work clean, as sea water is readily contaminated by hands, etc.