Bacteria-Phytoplankton Competition #### Overview: - Bacterial immobilization or remineralization of N. - Competition between bacteria and phytoplankton for DIN. - Experimentally examine how dissolved organic carbon (DOC) affects the competition between bacteria and phytoplankton for limiting nutrients. - Demonstrate use of microcosms to study microbial dynamics. - Analysis of time-series and predator-prey dynamics. # **Microbial Loop** The microbial loop is a conceptualization by which DOM can be routed into the classic food chain via bacteria and their grazers. ## Primary flow of C and N into aquatic food webs Energy and mass enter the base of the food web via phytoplankton or bacteria. Depending on the C:N composition of DOM, bacteria and phytoplankton can be in competition for DIN (and P). Organisms with the higher surface area to volume will win. ## Carbon and Nitrogen Balances #### **Bacteria** - Consume DOM - ⇒ Use DON over DIN - ⇒ Either excrete of consume DIN - Effect of C:N ratio of DOM on DIN uptake or excretion Rate of DOC uptake (µmol C l⁻¹ d⁻¹) Rate of DIN excretion (µmol N I⁻¹ d⁻¹) ρ_B : C:N Ratio of bacteria (atomic) ρ_D : C:N Ratio of DOM (atomic) Bacterial N requirement: $\varepsilon r_U \frac{1}{\rho_B}$ N associated with DOM uptake: Rate of DIN excretion: $$r_E = r_U \left(\frac{1}{\rho_D} - \frac{\epsilon}{\rho_B} \right)$$ # **Phytoplankton-Bacteria Competition** - Consider aggregated conceptualization of lower trophic levels. - If the C:N ratio of DOM is high, then bacteria will utilize DIN. - Bacteria should out compete phytoplankton for DIN. Why? - Dynamics of food web should be dependent on DOM composition Paradox: why do phytoplankton excrete DOM? ### Value of Time Series Data In order to understand ecosystem function, causal relationships need to be determined between organisms and nutrients. - "Snap shots" can not provide this information. Systems must be followed over time. - Basic understanding obtained from observations can be used to build models. - New time series data can be used to test models. ## **Example: Mesocosm Experiment** ### Additions: - NO $_{3}$ (5 μ M), PO $_{4}$ (0.5 μ M), Si (7 μ M) - Leaf litter leachate (300 μM DOC) ### • Samples Taken: - NO₃, NH₄, PO₄, Si, O₂ DIC - PAR - POC, PON, DOC, DON - Chl a - PP (¹⁴C and O₂ incubations) - Bacterial No. and productivity - Phyto- and zooplankton counts - DI¹³C, DO¹³C, DO¹⁵N - Size fractionated δ^{13} C and δ^{15} N #### • Treatments: Control: Bag AOrganic Matter: Bag B Daily Nutrients: Bag C – DOM + Nutrients: Bag D ### **Mesocosm Food Web Model** - Aggregated, coupled C and N model - Emphasis on OM processing - Holling type II and III growth kinetics - State Eqns: 10 - Auto.C, N - Osomo. C, N - Hetero. C, N - DetritusC - Detritus N - DIN N - DOM-L C - DOM-L N - DOM-R C - DOM-R N - Parameters - 29 Kinetic - 10 Initial cond. ### **Nutrients + Organic Matter (Bag D)** # **Experimental Setup** - Collect Woods Hole seawater into two 20 I carboys - Prepare two treatments: | | Treatment A | Treatment B | |------------------|-------------|------------------| | Glucose | 0 μΜ | 75 μM (450 μM C) | | NO_3^- | 36 μM | 36 μM | | SiO ₃ | 52 μM | 52 μM | | PO_4 | 2.3 μΜ | 2.3 μΜ | - Measure the following constituents over the 7 day incubation - DOC (1 person) - $NO_3^-(1)$ - NH₄+ (1) - PO₄³⁻ (1) - Chlorophyll a (by fluorescence and extraction) (1) - Bacteria abundances (DAPI) (1) - Ciliate and nanoflagellate abundance (DAPI) (1) - Phosphatase (2) - Bacterial production (2)