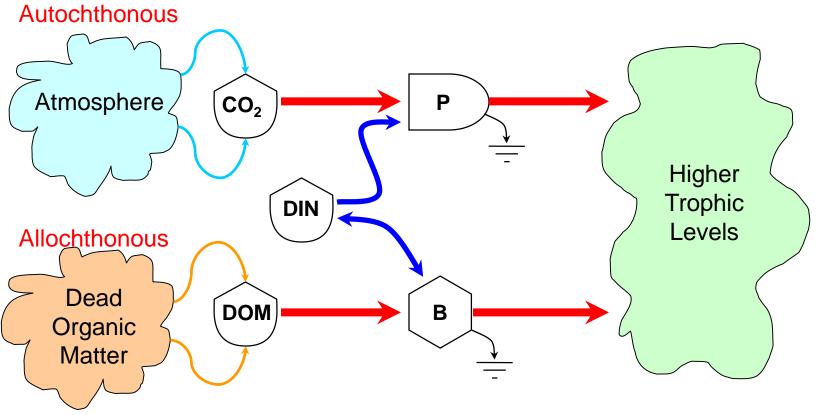

Bacteria-Phytoplankton Competition

Overview:

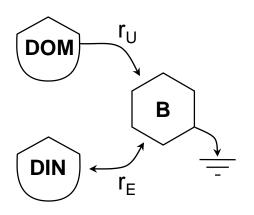
- Bacterial immobilization or remineralization of N.
- Competition between bacteria and phytoplankton for DIN.
- Experimentally examine how dissolved organic carbon (DOC) affects the competition between bacteria and phytoplankton for limiting nutrients.
- Demonstrate use of microcosms to study microbial dynamics.
- Analysis of time-series and predator-prey dynamics.


Microbial Loop

The microbial loop is a conceptualization by which DOM can be routed into the classic food chain via bacteria and their grazers.

Primary flow of C and N into aquatic food webs

Energy and mass enter the base of the food web via phytoplankton or bacteria.


Depending on the C:N composition of DOM, bacteria and phytoplankton can be in competition for DIN (and P).

Organisms with the higher surface area to volume will win.

Carbon and Nitrogen Balances

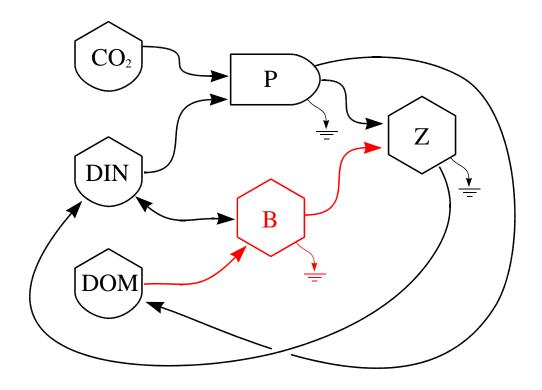
Bacteria

- Consume DOM
- ⇒ Use DON over DIN
- ⇒ Either excrete of consume DIN
- Effect of C:N ratio of DOM on DIN uptake or excretion

Rate of DOC uptake (µmol C l⁻¹ d⁻¹)

Rate of DIN excretion (µmol N I⁻¹ d⁻¹)

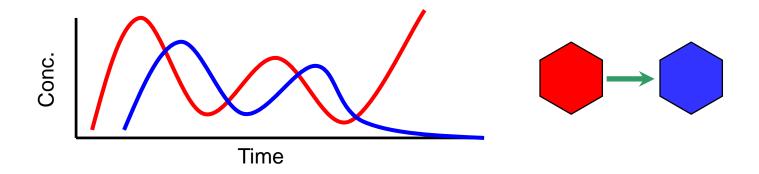
 ρ_B : C:N Ratio of bacteria (atomic)


 ρ_D : C:N Ratio of DOM (atomic)

Bacterial N requirement: $\varepsilon r_U \frac{1}{\rho_B}$ N associated with DOM uptake:

Rate of DIN excretion:
$$r_E = r_U \left(\frac{1}{\rho_D} - \frac{\epsilon}{\rho_B} \right)$$

Phytoplankton-Bacteria Competition


- Consider aggregated conceptualization of lower trophic levels.
- If the C:N ratio of DOM is high, then bacteria will utilize DIN.
- Bacteria should out compete phytoplankton for DIN. Why?
- Dynamics of food web should be dependent on DOM composition

Paradox: why do phytoplankton excrete DOM?

Value of Time Series Data

 In order to understand ecosystem function, causal relationships need to be determined between organisms and nutrients.

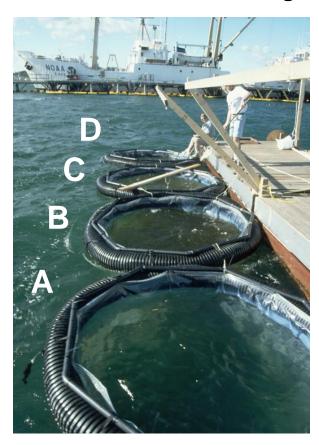
- "Snap shots" can not provide this information. Systems must be followed over time.
- Basic understanding obtained from observations can be used to build models.
- New time series data can be used to test models.

Example: Mesocosm Experiment

Additions:

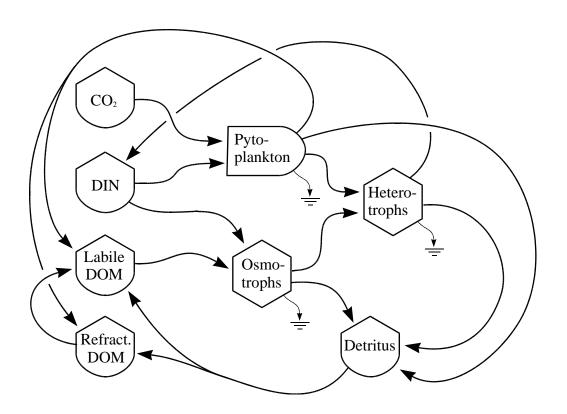
- NO $_{3}$ (5 μ M), PO $_{4}$ (0.5 μ M), Si (7 μ M)
- Leaf litter leachate (300 μM DOC)

• Samples Taken:

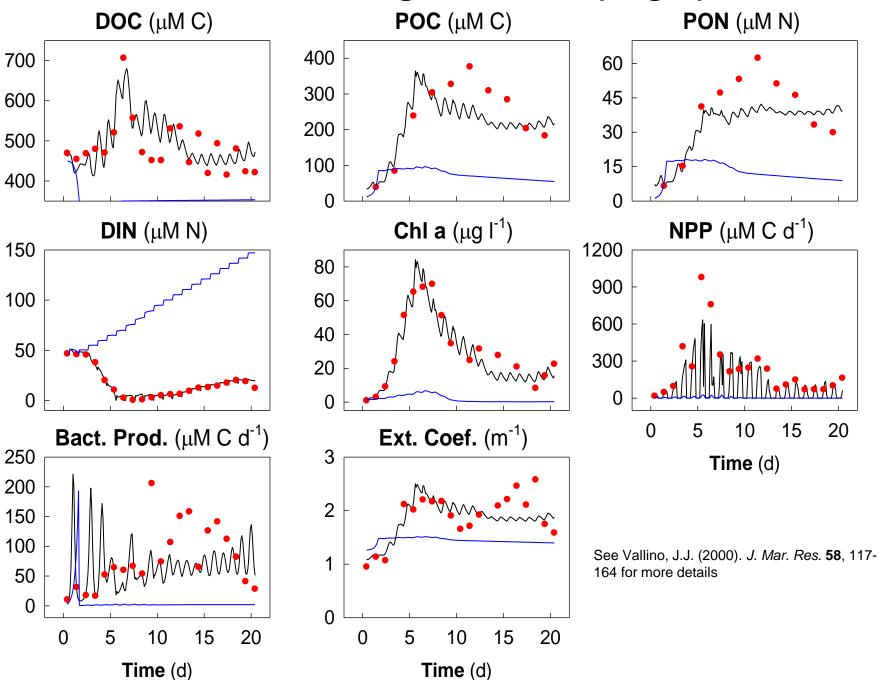

- NO₃, NH₄, PO₄, Si, O₂ DIC
- PAR
- POC, PON, DOC, DON
- Chl a
- PP (¹⁴C and O₂ incubations)
- Bacterial No. and productivity
- Phyto- and zooplankton counts
- DI¹³C, DO¹³C, DO¹⁵N
- Size fractionated δ^{13} C and δ^{15} N

• Treatments:

Control: Bag AOrganic Matter: Bag B


Daily Nutrients: Bag C

– DOM + Nutrients: Bag D


Mesocosm Food Web Model

- Aggregated, coupled C and N model
- Emphasis on OM processing
- Holling type II and III growth kinetics

- State Eqns: 10
 - Auto.C, N
 - Osomo. C, N
 - Hetero. C, N
 - DetritusC
 - Detritus N
 - DIN N
 - DOM-L C
 - DOM-L N
 - DOM-R C
 - DOM-R N
- Parameters
 - 29 Kinetic
 - 10 Initial cond.

Nutrients + Organic Matter (Bag D)

Experimental Setup

- Collect Woods Hole seawater into two 20 I carboys
- Prepare two treatments:

	Treatment A	Treatment B
Glucose	0 μΜ	75 μM (450 μM C)
NO_3^-	36 μM	36 μM
SiO ₃	52 μM	52 μM
PO_4	2.3 μΜ	2.3 μΜ

- Measure the following constituents over the 7 day incubation
 - DOC (1 person)
 - $NO_3^-(1)$
 - NH₄+ (1)
 - PO₄³⁻ (1)
 - Chlorophyll a (by fluorescence and extraction) (1)
 - Bacteria abundances (DAPI) (1)
 - Ciliate and nanoflagellate abundance (DAPI) (1)
 - Phosphatase (2)
 - Bacterial production (2)